
Formalising Secure Multi-Party Computation in Isabelle
David Butler

The Alan Turing Institute and The University of Edinburgh

Secure Multi-Party Computation
Secure Multi-Party Computation (SMPC) aims to allow a
set of parties to jointly evaluate a function on their inputs
while keeping their inputs private. The origins of this work
can be traced back to Yao’s Millionaire’s problem:
• A group of millionaires want to know who has the most
money without revealing their individual wealth.

xi
?
≤ xj

£x1 £x2

£x3£x4

The four party millionaire’s problem, who is the most wealthy?

Formally the goal of SMPC is to compute a map from pairs
of inputs to pairs of outputs, with each party receiving
it’s corresponding output such that their input remains
private. This map is called the protocol’s functionality as
it represents the specification of what the protocol should
achieve — it may be deterministic or probabilistic. Here
we will consider the two party case for simplicity.

f : input1 × input2 −→ output1 × output2

For example, a secure multiplication protocol which allows
each party to output an additive share of the multiplica-
tion has a functionality of the form

f (x, y) = (s1, x.y − s1), s1
$←− Zq.

We uniformly sample one of the outputs so one output
alone does not reveal the value of x.y.

Oblivious Transfer
Oblivious transfer (OT) is a fundamental primitive used
in many SMPC protocols. The illustration demonstrates
the functionality of Oblivious Transfer.

OT

b∈{0,1}←−−−−

−→ mb

(m0,m1)−−−−→

The functionality for Oblivious Transfer.

One party holds two messages, (m0,m1), and the other
a choice bit b ∈ {0, 1}. The second party receives mb

as output while the first party receives nothing. Without
any security requirements the problem is trivial, but to
compute this functionality without the first party learning
b and the second party learning m1−b is difficult.

Defining Simulation Based Security
We prove security in the computational model using the
simulation based technique. To do this we establish a sim-
ulation between the real world, where the protocol plays
out, and an ideal world, which is taken as the definition
of security. This formalises the intuition that a protocol
is secure if it can be simulated in an ideal environment in
which there is no data leakage by definition.

The Real World

Party
Two

Party
One

messages←−−−−−
messages−−−−−→

The Ideal World

Trusted
Party

←− input2

−→ output2

input1 −→

output1←−

The real world is where the protocols runs and the ideal world has no
data leakage by definition.

Let π be a two party protocol with inputs (x, y) and with
security parameter n.
• The real view of the ith party is denoted by

vπi (x, y, n) = (w, rk,mi
1, ...,m

i
t)

where w is the input, rk accumulates random values
generated by the party in the execution, and the mi

j

are the messages received by the party.
• Denote the joint output as

outπ(x, y, n) = (outπ1 (x, y, n), outπ2 (x, y, n)).

Definition of Security

A protocol, π, is said to securely compute f in the pres-
ence of a semi-honest adversary (an honest but curious
adversary) if there exist probabilistic polynomial time al-
gorithms (simulators) S1, S2 such that

{S1(1n, x, f1(x, y)), f (x, y)} c≡ {vπ1 (x, y, n), outπ(x, y, n)}

{S2(1n, y, f2(x, y)), f (x, y)} c≡ {vπ2 (x, y, n), outπ(x, y, n)}.

Here X c≡ Y means X and Y are computationally indis-
tinguishable — that is no polynomial time distinguisher
can distinguish the distributions with greater than neg-
ligible probability. So security is expressed by showing
equivalence between the real and ideal worlds.

Formalising in Isabelle
We are able to define the real and simulated views as prob-
abilistic programs and thus create the required distribu-
tions to show security. We do this in Isabelle using theory
from Andreas Lochbihler’s CryptHOL [1]. In particular we
make use of the sub probability mass functions (spmfs) he
introduces. For example, the functionality for the secure
multiplication protocol is defined in Isabelle as:

f x y = do {
s1← sample_uniform q;
returnspmf (s1, x.y − s1)}

In order to formalise proofs of security we first provided a
definition of computational indistinguishability, following
the definition of Lindell in [2].
Two lemmas we use in our proofs are:

•X = Y =⇒ X
c≡ Y

• [X c≡ Y ; Y c≡ Z] =⇒ X
c≡ Z.

These two lemmas help us to formalise the proofs of secu-
rity. We show either:
• information theoretic security if distributions are equal.
• a reduction to a known hard problem, both of which
satisfy the definitions of security we require.

Information Theoretic Security
If the two distributions are equal then we are able to show
information theoretic security. Our proof method is as
follows:
• Define intermediate probabilistic programs (Ii) that
will take us from one distribution to the other.

• Show equality between successive intermediate Ii.
• Then show equality between the two distributions.

Dist1 = I1 = I2 = ... = In = Dist2

To show equality between Ii and Ii+1 we use our own lem-
mas and ones from CryptHOL. The main ‘jumps’ are made
by using one time pad lemmas that we prove — these are
usually left to the cryptographers intuition. For example,
a lemma showing that a the distributions (y + b) mod q
where b $←− Zq and b′ $←− Zq are equal would take the form

mapspmf (λb. (y + b) mod q) (sample_uniform q)
= sample_uniform q

in Isabelle.

Reductions
The proof method runs as follows:
• Assume D can distinguish the two distributions.
• Using D, construct an adversary (A(D)) that breaks a
known hard problem.

• Show computational indistinguishability using the
assumption on the known hard problem.

Formally we show the advantage of D in distinguishing
the two original distributions is the same as the advantage
A(D) has against the known hard problem. That is we
show:

advdist (D) = advhard (A(D))

Formalised Proofs
Examples of the simulation based proofs we have for-
malised include:
• a Secure Multiplication Protocol — each party outputs
a share of the multiplication.

• an information theoretic OT which uses a trusted
initialiser.

• the Noar-Pinkas OT.
• a protocol based on GMW to securely compute an
AND gate.

Conclusion and Future Work
• We have shown a general approach for capturing
simulation based proofs and have formalised some
proofs.

• This is only a starting point for the development of
theory that will hopefully further formalise SMPC.

• Current work includes formalising the proof of security
for the GMW protocol — a protocol that allows for the
evaluation, between two parties, of any function that
can be represented as a boolean circuit.

References

[1] Andreas Lochbihler. Probabilistic Functions and
Cryptographic Oracles in Higher Order Logic.
In ESOP, volume 9632 of Lecture Notes in Computer Science,
pages 503–531. Springer, 2016.

[2] Yehuda Lindell. How to Simulate It A Tutorial on the Simulation
Proof Technique.
In Tutorials on the Foundations of Cryptography, pages
277–346. Springer International Publishing, 2017.


